Low Dose Lithium for Bipolar Disorder & Drugs in the Psychiatric Pipeline

research updates in psychiatry

Is Low Dose Lithium Effective in Bipolar Disorder?

Although it remains one of our oldest and most effective drugs, lithium has become less popular for the treatment of bipolar disorder in the last two decades. The recent LiTMUS trial compared outcomes in bipolar disorder when all subjects took non-lithium mood-stabilizing medication, while half were also randomized to low-dose lithium. The others remained on their existing medications (“optimized personal treatment,” or OPT) alone. LiTMUS involved 283 subjects with bipolar disorder I (77%) or II. All were considered by their psychiatrists to be candidates for lithium treatment. The lithium group (N=141) was given 600 mg/d lithium for the first two months, with further adjustments up or down as necessary, while the rest remained on OPT alone.

After six months of follow-up, the authors found no significant advantage to lithium on the CGI-BP-S (clinical global impression for bipolar severity) scale. Scores decreased by only 1.22 points in subjects in the lithium+OPT group, versus 1.48 points in the OPT group. There was also no difference between the groups in the number of medication adjustments required by clinical need.

Was this a failure of lithium? Not necessarily. It’s possible that lithium may simply not have been dosed appropriately. Mean lithium levels in the lithium+OPT group ranged between 0.43 and 0.47 mEq/L during the trial (as opposed to the >0.8 mEq/L recommended by most treatment guidelines). And even though the focus of the trial was on low-dose lithium, clinicians were free to increase lithium dose as much as they wished after the first two months. As a single-blind trial, it is also possible that prescribers may have been reluctant to increase lithium dose for fear of causing additional side effects. Finally, higher doses may only have been given to those subjects with more severe illness.

Overall, clinical outcomes were disappointing in both groups, with only one quarter of all subjects achieving remission (defined as CGI-BP-S <2 for two months). Symptomatic improvement ranged from 30% to 50% in both groups. The only metric on which the lithium+OPT group differed from OPT alone was in their lower use of atypical antipsychotics, which were prescribed to only 48.3% of the lithium-OPT subjects (vs. 62.5% of the OPT group) (Nierenberg AA et al, Am J Psychiatry 2013;170(1):102–110).

TCPR’s Take: Lithium has a well-deserved position as a workhorse of modern psychiatry, and while this study’s results seem to call that role into question, a “peek under the hood” shows that lithium may simply have been dosed too conservatively in this study. Notably, only a quarter of all subjects in this naturalistic, “real world” trial achieved remission while taking guideline-driven therapy (OPT), with or without lithium. And while it appears that patients on lithium were less likely to use atypical antipsychotics, it remains an open question whether higher doses of lithium may have produced better clinical outcomes than OPT.

Drugs in the Pipeline

Drugs Acting on Glutamate

This article originally appeared in The Carlat Psychiatry Report -- an unbiased monthly covering all things psychiatry.
Want more, plus easy CME credit?
Subscribe today!

You’re probably hearing a lot of talk about glutamate receptors as a new target for psychiatric therapeutics. As the most abundant excitatory neurotransmitter in the brain, glutamate is thought to play a role in many psychiatric conditions. Some existing drugs act on the glutamate system (eg, lamotrigine and memantine), but more are likely on the way. In fact, several lines of evidence suggest that glutamate function may be disrupted in psychosis and in mood disorders.


Drugs like PCP and ketamine inhibit the NMDA receptor (one of the main glutamate receptor subtypes, others being the AMPA receptor and the metabotropic or “mGluR” receptors). When abused, these drugs can cause a schizophrenia-like syndrome, complete with positive, negative, and cognitive symptoms. Moreover, glutamate synapses also appear to develop abnormally in schizophrenia, and hypofunction of the NMDA receptor has been observed in later stages of the disease (Moghaddam B and Javitt D, Neuropsychopharm 2012;37:4–15).

One theory of schizophrenia is that faulty NMDA receptors—present on inhibitory interneurons—are indirectly responsible for the overproduction of glutamate in the prefrontal cortex, where glutamate acts on non-NMDA receptors in a disorganized fashion, possibly contributing to psychosis.

Some new antipsychotics under development include drugs that enhance NMDA receptor function and thereby reduce cortical glutamate. Mechanisms of these drugs include the activation of secondary pathways like the metabotropic mGlu5 receptor on NMDA-containing cells (mGlu5 agonists) or the modulation of other metabotropic glutamate receptors found in the cortex (mGlu2/3 agonists). Also, since the NMDA receptor is a complex receptor with binding sites for co-activating molecules like the amino acid glycine, these sites are targets for so-called “allosteric modulators” which, when present, may enhance glutamate signaling at the NMDA receptor.

Each of these mechanisms represents a target of current drug development. Results, however, have been mixed. Perhaps the most promising, LY2140023, an mGlu2/3 agonist from Eli Lilly, failed a phase III trial late last year. Roche is developing a glycine transport inhibitor called bitopertin which has shown reductions in negative symptoms in phase II trials. Other trials have focused on sarcosine, a dietary supplement that also works as a glycine transport inhibitor. mGlu5 agonists are still in preclinical (ie, animal) testing. These and other glutamatergic drugs may find a place in the treatment of psychosis in the near future.


The NMDA receptor has also received a great deal of attention in the treatment of depression, spurred by the observation that subanesthetic doses of intravenous ketamine, an NMDA antagonist, may have a rapid (within hours) and prolonged (up to two weeks) antidepressant effect (Zarate CA et al, Arch Gen Psychiatry 2006;63(8):856–864). The mechanism appears to involve the sprouting of neural synapses in the brain and the reversal of stress-induced changes (Li N et al, Science 2010;329(5994):959–964). Some hospitals and clinics have begun to provide this off-label treatment to patients with treatment-resistant depression.

Not surprisingly, the excitement surrounding ketamine has led to compounds believed to act similarly. One is GLYX-13, an NMDA partial agonist developed by Naurex, which showed promise in phase IIa trials. This intravenous agent boasts a similar time course of action as ketamine but fewer side effects.

Another is AZD6765, an intravenous NMDA antagonist first developed by AstraZeneca as a neuroprotective agent for stroke patients. In treatment responders, sustained benefit isn’t seen until three weeks, calling into question any advantage over current antidepressants.

Phase IIb trials for each of these agents are currently under way. Other glutamatergic drugs being studied for depression include an mGlu2/3 antagonist (Roche), an mGluR5 antagonist (Roche), and NMDA antagonists which bind to specific subunits (particularly NR2B) of the NMDA receptor complex.

TCPR’s Take: Currently available treatment options for psychosis and depression leave much to be desired. Lately, attention has been drawn to the glutamate synapse, with several drug companies jockeying to bring new glutamatergic drugs to market. These may represent a significant advance in psychiatric therapeutics, and might be useful adjuncts to existing treatments. Hopefully research will reveal the best use of these agents, specific patients who will benefit, and any possible side effects resulting from their use.

Low Dose Lithium for Bipolar Disorder & Drugs in the Psychiatric Pipeline

This article originally appeared in:

The Carlat Psychiatry Report
Click on the image to learn more or subscribe today!

This article was published in print 2/2013 in Volume:Issue 11:2.


APA Reference
Spielmans,, G. (2014). Low Dose Lithium for Bipolar Disorder & Drugs in the Psychiatric Pipeline. Psych Central. Retrieved on December 4, 2020, from


Scientifically Reviewed
Last updated: 23 Jun 2014
Last reviewed: By John M. Grohol, Psy.D. on 23 Jun 2014
Published on All rights reserved.